大数据与软件学院论文“DPC: DPU-accelerated High Performance File System Client”获ICPP2024最佳论文提名

大数据与软件学院论文“DPC: DPU-accelerated High Performance File System Client”获ICPP2024最佳论文提名

近日,大数据与软件学院钟刊副教授团队与厦门大学和清华大学合作的论文“DPC: DPU-accelerated High Performance File System Client”被国际并行处理会议ICPP 2024录用,并获得最佳论文提名。ICPP(International Conference on Parallel Processing)国际并行处理会议是计算机学科历史最悠久的国际学术会议之一,今年是该会议的第53届,在8月12日 – 8月15日于瑞典哥特兰岛举办。来自并行和分布式领域的学术界、工业界、政府的相关工程师和研究人员在大会展示了在并行和分布式系统方面的最新研究成果。大会今年共接收论文121篇,论文接受率29%,共3篇论文获得最佳论文提名。大数据与软件学院论文“DPC: DPU-accelerated High Performance File System Client”获ICPP2024最佳论文提名

研究工作简介:为了实现对文件系统后端的高效文件访问,文件系统客户端采用了诸如本地数据/元数据缓存和直接数据访问等复杂优化技术。然而,这些技术给主机CPU带来了显著的负载,对宝贵的CPU资源构成了巨大挑战。在本文中,我们提出了DPC,一个为分布式和独立文件系统设计的DPU加速的高性能客户端。DPC将复杂的文件语义操作(如文件或目录委托、缓存管理和纠删码计算)从主机CPU卸载到DPU,从而释放了主机CPU算力。该工作引入了nvme-fs,它通过增强NVMe协议,允许应用程序通过原生文件语义直接与DPC交互。DPC提出了一种混合缓存机制,通过分离数据平面和控制平面来加速文件访问。DPC提出了基于键值的文件系统KVFS,以提供本地独立文件服务,用远端存储替代使用不足的本地磁盘。实验结果表明,DPC能够实现极低的(低至20微秒)主机-DPU传输延迟。DPC提供的本地独立文件服务性能超过了本地Ext4,并在高并发场景下节省了超过80%的CPU使用率。此外,使用DPC的分布式文件系统在保持高性能的同时,可以减少90%的主机CPU使用率。

大数据与软件学院论文“DPC: DPU-accelerated High Performance File System Client”获ICPP2024最佳论文提名

来源:大数据与软件学院

作者:钟刊 蒲姝颖

特别申明:
1、圈子科技公众平台上的内容观点仅代表作者本人,不代表圈子科技立场。
2、本平台部分内容(如有图片或视频亦包括在内)来源于网络,本平台仅提供信息存储服务,无法保证上述内容的准确性、有效性、时间性。
3、阅读本内容因误导等因素而造成的损失,本平台不承担连带责任。
4、如本文相关内容侵犯了您的合法权益,请您在线提交工单,我们将在3个工作日内处理完毕。

给TA打赏
共{{data.count}}人
人已打赏
0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索